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Geometry optimization, including searching for transition states, accounts for most of the CPU time spent in
quantum chemistry, computational surface science, and solid-state physics, and also plays an important role
in simulations employing classical force fields. We have implemented a geometry optimizer, called DL-
FIND, to be included in atomistic simulation codes. It can optimize structures in Cartesian coordinates,
redundant internal coordinates, hybrid-delocalized internal coordinates, and also functions of more variables
independent of atomic structures. The implementation of the optimization algorithms is independent of the
coordinate transformation used. Steepest descent, conjugate gradient, quasi-Newton, and L-BFGS algorithms
as well as damped molecular dynamics are available as minimization methods. The partitioned rational function
optimization algorithm, a modified version of the dimer method and the nudged elastic band approach provide
capabilities for transition-state search. Penalty function, gradient projection, and Lagrange-Newton methods
are implemented for conical intersection optimizations. Various stochastic search methods, including a genetic
algorithm, are available for global or local minimization and can be run as parallel algorithms. The code is
released under the open-source GNU LGPL license. Some selected applications of DL-FIND are surveyed.

I. Introduction

The identification of stationary points, such as minima and
transition states, on a potential energy surface (PES) is a central
task in atomistic simulations and is therefore vital to fields such
as computational chemistry, theoretical surface science, and solid
state physics. A stationary point on the potential energy surface
E(x) is a point, x, where the gradient of E vanishes: g(x) ≡ ∇E
) 0. Various types of stationary points are of interest in
atomistic simulations, including minima, transition states, and,
in quantum chemical simulations, conical intersections.

Local minima are characterized by the Hessian H(x), the
matrix of second derivatives with respect to the atomic
coordinates, having only positive eigenvalues. Hence, they
correspond to chemically stable or metastable structures, as a
small displacement in any direction raises the potential energy.
The minimum of lowest energy on a PES is denoted the global
minimum and corresponds to the most stable structure at 0 K.

Transition states represent the highest point(s) on the minimum-
energy path connecting two stationary points (usually minima).
They can be defined geometrically1 as stationary points char-
acterized by a single negative eigenvalue of the Hessian matrix.
Steepest-descent paths leaving the transition state forward and
backward along the corresponding eigenvector will lead to the
two connected stationary points. The barrier heightsthe dif-
ference in energy between a minimum and a transition statesis
related to the reaction rate by transition state theory.

Excited state surfaces can be characterized by the optimization
of conical intersections, which occur when two electronic states
I and J are degenerate. The degenerate region is normally a
seam (hyperline) with a - 2 dimensions, where a is the number
of degrees of freedom. The degeneracy is broken by moving in
the remaining plane (known as a branching plane) defined by
the gradient difference vector gIJ and the gradient of the interstate
coupling hIJ. These two vectors play an important role in conical
intersection optimization algorithms. The energetically lowest
point on a conical intersection (the minimum energy crossing
point, MECP) is the point of the most likely transition between
the two electronic states and is therefore somewhat analogous
to the transition state in single state reactions.

A wide variety of algorithms are available to locate the
stationary points described above. Historically most methods
rely on a sequential optimization cycle where the gradient and
sometimes an analytical or approximate Hessian are used to
progressively improve a guess for the optimized geometry. More
recently parallel search algorithms have been developed to
exploit the resources of parallel computers and clusters. Serial
algorithms can also be used in these environments by parallel-
izing the energy and gradient evaluation, but this approach is
generally limited by the methods used to calculate the energy.
Intrinsically parallel search algorithms, which use the informa-
tion from many points on the potential energy surface at once,
can lead to a higher efficiency in finding stationary points, in
terms of the effective time-to-solution.

The efficiency with which stationary points are located often
depends on the coordinate system used. Algorithms which
follow the negative gradient toward a minimum generally
converge faster when the degrees of freedom are less coupled.
This coupling depends on the choice of the coordinate system.
Often Cartesian coordinates are more coupled than internal
coordinates, which describe the system via bond lengths, angles,
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and dihedral angles, and are therefore more aligned with the
way the system can move.

In this paper, we present the algorithms and implementation
of the geometry optimization methods and coordinate systems
available in the DL-FIND program. In section II. we describe
the general features of the DL-FIND library, including the
structure of the code and the interface to the program that
performs the energy and gradient evaluation (the calling
program). Other general features include the choice of coordinate
system (which is independent of the search algorithm), the trust
region definition, and convergence criteria. In section III we
describe the specific optimization tasks that can be performed
under the categories of local minimization, global (parallel)
minimization, transition state optimization, and conical intersec-
tion optimization. Finally, example optimizations are given in
section IV.

II. General Features

II.A. Structure of the DL-FIND Code. DL-FIND is written
as a library which can be linked to codes (referred to here as
the calling program) that provide the potential energy and its
derivatives for a given atomic structure. The energy can be
obtained from electronic structure calculations, classical force
fields, or any other method. In principle any objective function
of multiple variables can be used, although the coordinate
transformation algorithms and associated constraints are only
meaningful in relation to atomic coordinates.

The internal structure of the code is modular. A main module
controls the overall progress of the optimization cycles. It also
calls the interface routines which pass the atomic geometry to
the calling program and obtain the energy and gradient. These
calculations are performed in Cartesian coordinates so that the
calling program does not have to understand the coordinate
systems used by DL-FIND. Another module is responsible for
the coordinate transformations to and from Cartesian coordi-
nates. This sequence of coordinate transformation and energy
evaluation can loop over multiple sets of structures, which is
needed for optimization methods which require more than one
gradient evaluation per optimization step, like the nudged elastic
band method or the dimer method.

The coordinate systems available are independent of the
optimization algorithms, which operate on an unspecified set
of internal coordinates. The algorithms are therefore also
contained in separate modules, which are given coordinate and
gradient vectors by the coordinate transformation module. The
optimization module contains algorithms to follow the negative
gradient to a minimum, to find transition states, or to perform
a constrained minimization to a conical intersection. It obtains
a coordinate vector and a gradient vector and returns a step
direction and, depending on the algorithm, also a step length.
It also includes the global (parallel) optimization algorithms,
which necessarily have a distinct implementation and mode of
operation (for example, they do not return a step vector). The
next module takes care of the line search or trust radius
algorithm. Finally, there are modules providing utility functions,
such as bookkeeping of the overall storage allocation, timing
measurement, or wrappers for calls to linear algebra libraries
and parallel communication routines.

This modular arrangement allows the combination of different
optimization algorithms with different coordinate systems. To
our knowledge we were the first to apply the dimer method in
any type of internal coordinate description, which turned out
to accelerate convergence to transition states significantly. The

modularity of the code also allows new optimization algorithms
or coordinate systems to be implemented in a straightforward
manner.

Restart information can be written to disk at specified
intervals. The assumption has been made that most of the
computation time is spent calculating the energy and gradient.
Therefore, restart information is written after an energy evaluation.

The DL-FIND library is written in standard Fortran 95,
including the technical report TR 15581, which means that
allocatable arrays are used as dummy arguments and in derived
types. The code is released under the open-source GNU Lesser
General Public License (LGPL)2 and can be downloaded online.3

II.B. Parallelism. Optimization techniques that involve more
than one independent configuration at each iteration (such as
the genetic algorithm, random search, and nudged elastic band)
are amenable to parallelization whereby the energy evaluations
for the individual structures occur simultaneously on different
processors. Such a “task-farming” parallelism is implemented
in DL-FIND using MPI (message passing interface4). Each task
farm (or workgroup, i.e., subset of processors) calculates the
energy and required gradients for a nonoverlapping selection
of the structures at the current iteration. The load balancing is
static, and the number of task farms must be a factor of the
total number of processors for a given run. If the number of
task farms requested is less than the total number of processors,
then the single-point energy and gradient calculations for each
individual can also be parallelized within a task farm, subject
to the availability of this functionality in the calling program.
The task-farming parallelism does not affect the operation of
DL-FIND compiled as a serial library. A parallel-enabled version
of the DL-FIND library is obtained at compile time using a
build option, as described in the user manual supplied with the
source code.

II.C. Interface to the Calling Program. DL-FIND presents
a well-defined interface for integration with the calling program.
The calling program first calls the main DL-FIND routine, which
does not return until the optimization is complete. When DL-
FIND requires information from the calling program during the
optimization, an interface routine is called. These routines must
be supplied by the calling program. A basic set of routines is
required for serial calculations while an additional set is
necessary to handle parallelization.

In the serial case, the first interface call is used to get the
input parameters from the calling program. These consist of
the starting structure for the optimization and the DL-FIND
options that the user has requested. Following this, the optimiza-
tion begins and a further call is made each time an energy or
energy derivative is required. DL-FIND provides a set of
Cartesian coordinates to the calling program and receives back
the required values. The main interface routine here requests
the energy and gradient. A second routine requests the Hessian
if the optimization method requires one and the user has
specified that it should be calculated by the calling program
rather than calculated numerically by DL-FIND. There is also
a third routine specific to conical intersection optimizations,
which requests an energy and gradient for both of the electronic
states involved, and if necessary the interstate coupling gradient.
The latter two routines only have to be implemented by the
calling program if these methods are desired. At the end of each
cycle (and at the end of the optimization), another routine passes
the current set of Cartesian coordinates back to the calling
program.

Two further interface calls are made in special circum-
stances. The first is called after a reset of the optimization
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algorithm. This gives the calling program an opportunity to make
updates that would result in a discontinuity in the potential
energy surface (e.g., an update of the molecular mechanics
neighbor lists). The second routine is called in the event of an
error and simply returns control to the calling program.

The interface strategy concerning parallelism allows for either
DL-FIND or the calling program to set up and obtain parameters
for the MPI communications, as is most appropriate. In this
way, the task-farming parallelism in DL-FIND may be employed
with calling programs that lack parallel capability in isolation.
A standard DL-FIND routine for direct or indirect initialization
and setup of the global communicator must be called from the
calling program in either case. This call should be located either
in the usual place for MPI initialization (as close to the start of
the program as possible) if DL-FIND is responsible for the
parallelism or between the MPI setup in the calling program
and the first call to a DL-FIND routine, otherwise. DL-FIND
will then automatically determine whether it or the calling
program controls the global MPI initialization. If the calling
program is not parallelized, then a standard DL-FIND routine
to shut down and finalize the MPI communications must also
be called from an appropriate place.

Furthermore, unit numbers for input/output to disk that are
set in the calling program can, if desired, be made known to
DL-FIND via an interface routine called from the main program.
This subroutine can also be used by DL-FIND to disentangle
the output from different processors in a parallel run. Interface
routines to supply information on the global and the task-farming
communications (e.g., processor identity, number of processors,
communicator handle) from either the calling program to DL-
FIND or vice versa, as appropriate, must also be provided. A
variable that indicates to DL-FIND whether it or the calling
program will setup the task-farming communications should be
included with the input parameters passed to DL-FIND via the
first serial interface routine discussed above.

InterfacestoDL-FINDhavebeenimplementedinGAMESS-UK5,6

and ChemShell.7,8 An interface to CRYSTAL9 is also under
development. The interface to ChemShell in turn allows other
programs to be employed with DL-FIND using the standard
ChemShell drivers. These drivers have been extended to allow
multiple-state calculations with MNDO,10 Gaussian,11 and
MOLPRO,12 which enables the conical intersection algorithms
to be used with these codes. Currently, the GAMESS-UK and
CRYSTAL interfaces can allow task-farming parallelism. Such
parallelism in conjunction with ChemShell is intended as a future
development.

II.D. Coordinate Systems. The optimization algorithms in
DL-FIND operate with a set of working coordinates, x′, which
may be defined in a number of ways as follows.

II.D.1. Cartesian Coordinates. In the simplest case, the
optimization is carried out in Cartesian coordinates without
constraints. Then, no coordinate transformation is done, x′ )
x. Even in Cartesian coordinates, constraints can be used: atoms
can be frozen (not optimized) or Cartesian components of atoms
can be constrained. These are mapped out of the coordinate and
gradient vectors. Additionally, optimization in mass-weighted
Cartesian coordinates is implemented, where x′ ) m1/2x, with
m1/2 being a diagonal matrix with the square roots of the masses
of the atoms in the diagonal.

II.D.2. Internal Coordinates. Internal coordinates describe
a system in terms of bond lengths, bond angles, and dihedral
angles, summarized as q(x). The number of these “primitive
internals” is generally larger than the number of degrees of
freedom they could describe (3N - 6 in general, where N is

the number of atoms, as global rotation and translation are not
described in internals). Thus, it is a redundant set of coordinates.
This cannot directly be used for optimization because of
forbidden step directions. For example, the optimization algo-
rithm could attempt to increase all three angles of a triangle.
Therefore, a set of nonredundant coordinates, delocalized
internal coordinates (DLC), is constructed by a linear transfor-
mation: x′ ) U ·q(x).13-15 In contrast to other implementations,13,14

we calculate this transformation once for one geometry, x0, and
then perform the optimization in the resulting set of nonredun-
dant internal coordinates.16 The alternative is to use the complete
redundant set in the optimization algorithm and restrict the
optimization step to allowed directions by an equivalent linear
transformation. If the geometry x deviates strongly from the
geometry x0 where the transformation was calculated, the back-
transformation from x′ to Cartesian coordinates x becomes
unstable. In this case, we construct a new transformation matrix
U. In such cases, the optimization algorithm has to be reset as
its history is inconsistent with the new set of coordinates. This
is one of the few cases where an interaction between the
coordinate transformation routines and the optimization algo-
rithm is necessary.

In some cases, the use of all distances between pairs of atoms
as q(x), i.e., a total-connection scheme, is more appropriate than
primitive internals. This is especially the case for structures close
to a transition state where the automatic definition of bonds is
difficult. In solid-state systems, the definition of bonds is often
impossible. Cartesian coordinates are more appropriate for these
systems.

The effort of the coordinate transformation from Cartesian
to nonredundant internal coordinates scales as O(N3). Thus, for
large systems, it can take up a significant portion of the overall
computer time used. For these cases, a linear-scaling algorithm
for using internal coordinates is implemented. In so-called hybrid
delocalized internal coordinates (HDLC),16 the system is
partitioned into fragments. Primitive internals are used within
each fragment. To couple the fragments together, the Cartesian
coordinates of each fragment are added to the redundant set of
coordinates q when constructing the transformation matrix U.
This still leads to weak coupling between the nonredundant
coordinates because the resulting weight of the Cartesians is
low but also to an algorithm which scales linearly with system
size. As for DLC, the total connection scheme can be used
instead of primitive internals.

II.D.3. Constraints. Coordinate-based constraints are avail-
able to the user. They are implemented in a simple manner,
whereby only constraints that are components of the coordinate
system can be specified. For example, in Cartesian coordinates
only Cartesian components can be fixed. In internal coordinates
based on primitive internals, bond lengths, angles, and/or
dihedral angles can be fixed. These constraints are handled by
mapping the corresponding components out of the coordinate
vector when forming the set of coordinates x′ used by the
optimization algorithm.

Conical intersection optimizations also involve the use of
constraints. These are automatically generated and specific to
each algorithm, and are discussed in section III.D.

II.E. Trust Radius Approaches. Optimization algorithms
generally provide the direction s of the next optimization step.
Linear algorithms, like steepest descent or conjugate gradient,
do not provide a step length. In these cases, and also in some
cases where step lengths are provided by the optimization
algorithm, a line search or trust radius approach can be used to
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restrict the step length to the region where the extrapolation of
the energy by using the gradient is expected to hold.

The simplest possible approach is a constant trust radius, i.e.,
a maximum length of the total step or maximum change in each
coordinate value. The latter is implemented here.

For sequential energy minimizations, a variable trust radius
based on the change of the target function, the energy, can be
used.16 The trust radius is increased by a factor of 2 whenever
the energy decreases and the so-called Wolfe conditions are
fulfilled. The first of these is the Armijo condition, which tests
whether the energy decreases by more than Rs ·g1, with s being
the step vector and g1 being the gradient before the step is taken.
The constant R can be freely chosen. A value of 10-4 was found
to be useful. The second Wolfe condition is the curvature
condition. It is fulfilled if |s ·g2| e �|s ·g1|, with g2 being the
gradient after the step s is taken. The factor � is chosen to be
0.99. Whenever these conditions are fulfilled, the trust radius
is scaled up by a factor of 2, subject to a maximum value which
is user-definable. If the energy decreases, but the Wolfe
conditions are not fulfilled, the step is accepted, but the trust
radius is kept unchanged. If the energy increased, it is a sign
that the last step taken was too long. In this case, the step is
rejected. The new trial position is obtained by adding half the
step to the previous position. The new trust radius is half the
previous trust radius or half the step length, whichever is smaller.

For transition state searches, and all tasks where no target
function can be defined (as in the nudged elastic band approach),
a variable trust radius based on the projection of the gradient
on the step vector can be used. The projection of g1 on the step
vector s is calculated before (p1 ) s ·g1) and after the step was
performed (p2 ) s ·g2). Ideally, p2 should be zero. If p2 is
positive, then the step was too small, if p2 is negative, then the
step was too large. Whenever p2 is positive, the point of zero
projection is extrapolated from p1 and p2 and the trust radius is
scaled up to this point. Thereby, the scaling factor is bound to
a maximum of 2. Whenever p2 is negative, the point of zero
projection is interpolated and the trust radius is calculated from
the resulting step length. In this case, the last step is rejected
and a smaller step with the new step length is used. This leads
to a good convergence behavior for conjugate gradient and
steepest descent optimizations whenever no objective function
is available, as is the case in the dimer method and the nudged
elastic band method.

II.F. Convergence Criteria. An optimization is considered
converged when all of the following five criteria are fulfilled
(all values in atomic units, a.u.). (i) The maximum absolute
gradient component has to be lower than c ) 0.00045; this value
can be changed by the user; (ii) the root-mean-square (rms) of
the gradient must be lower than (2/3)c, (iii) the maximum
absolute component of the step vector must be smaller than 4c,
(iv) the rms of the step vector must be less than (8/3)c, and (v)
the last change in energy has to be smaller than 10-6, a value
which can be changed by the user independently of c.

III. Specific Optimization Tasks

III.A. Local Minimization. Local minimization aims at
finding the minimum in the vicinity of the starting structure
following the negative gradient downhill in a more-or-less direct
fashion.

III.A.1. Steepest Descent. Steepest descent is the most
primitive minimization method which uses a gradient: the step
direction is s )-g. It converges very slowly, even for quadratic
optimization problems with a full line search.

III.A.2. Conjugate Gradient. The conjugate gradient scheme
following Polak-Ribière17 is implemented. With

the step direction is obtained from s ) -g2 + γs1, with s1 being
the direction of the last step. The scheme is reset every 10 steps
by setting γ ) 0. This improves convergence for optimization
problems that are not strictly quadratic.

III.A.3. Damped Molecular Dynamics. Integrating Newton’s
equations of motion with friction leads to an energy minimum.
Here, the Verlet algorithm18 is used with a damping factor R.
The limiting cases are R ) 0, which results in undamped
dynamics, and R ) 1, which results in the steepest descent
direction

Initially, a high damping factor of 0.3 is used, which is decreased
by a factor of 0.95 in each step while the energy decreases.
Whenever the energy increases, R ) 0.3 is used again to stop
the system from progressing uphill. Defaults are a time step ∆t
of 1 au and masses of 1 au for all particles, m ) 1. Realistic
masses are not required, as the aim is to find a stationary point
rather than simulate the correct dynamics. All these values can
be changed by the user.

III.A.4. Newton-Raphson/Quasi-Newton. The traditional
Newton-Raphson algorithm for minimization is implemented,
which uses a quadratic model for the optimization and therefore
requires an explicit calculation of the Hessian matrix. The step
is given by

The Hessian H may be calculated by either one- or two-point
finite difference within DL-FIND or analytically by the calling
program (via an interface call). The Hessian is then inverted to
calculate the step.

Quasi-Newton methods are also available in which the
expensive Hessian calculation is replaced by an approximate
update algorithm. The standard Broyden-Fletcher-Goldfarb-
Shanno19-22 (BFGS) algorithm should be selected to update the
Hessian for energy minimizations. The initial Hessian can be
specified as a unit matrix or a diagonal matrix (calculated
numerically from a single displaced geometry), or alternatively
a full initial Hessian can be calculated using the same methods
as for the Newton-Raphson algorithm.

In principle the Newton-Raphson method may be used to
locate transition states as well as energy minima. The quasi-
Newton method can also be used if a Bofill23 or Powell24 Hessian
update is selected (BFGS is unsuitable as it enforces a positive
definite Hessian). However, these approaches are less robust
than the specialized methods described in section III.C.

The quasi-Newton algorithm is the recommended method for
minimizing small- and medium-sized systems where the Hessian
matrix is relatively small. For larger systems it is not efficient
to keep the full Hessian matrix in memory, and so the limited
memory L-BFGS algorithm should be used instead.

III.A.5. L-BFGS. The limited-memory variant25,26 of the
BFGS update of the inverse Hessian is implemented (L-BFGS).
It starts out from a unit matrix for the inverse Hessian and
updates it with the BFGS scheme for the last M steps of the

γ )
(g2 - g1) · g2

g1 · g1
(1)

s )
(1 - R)s1 - g2

(∆t)2

m
1 + R

(2)

s ) -H-1g (3)
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geometry optimization (M being user-definable). The search
direction s ) -H-1g is thereby calculated without ever
calculating or storing the full Hessian, as described elsewhere25,26

in detail. Therefore this algorithm scales linearly in memory
and CPU time requirement with the number of degrees of
freedom. It provides a step direction as well as a step length.
To make sure the algorithm converges to a minimum rather
than a saddle point, the resulting step direction is reversed
whenever the angle between s and g is <90°, i.e., s ·g > 0. The
L-BFGS algorithm is implemented in an object-oriented way.
This allows multiple independent instances to be used, e.g., for
the rotation and translation in the dimer method.

III.B. Global Minimization. III.B.1. Genetic Algorithm.
Genetic algorithms are biologically inspired global optimization
methods in which populations of individuals (structures) evolve
by genetic operations and natural selection according to a fitness
function, which in this case is the potential energy.27,28

The optimization is seeded with a single input structure from
which a pool of ninit individuals are created by adding random,
uniformly distributed displacements on the interval [-r,r] to
the optimizable coordinates. The n structures of lowest energy
are then taken as the initial population. The values of n, ninit,
and r are all determined via input options. At each generation,
the “mating” process, by which a number of the most unfit
individuals are replaced by “offspring”, proceeds via a crossover
scheme with blending at the randomly selected crossover point.29

The number of structures to be replaced is calculated from the
chosen fractional replacement rate per population. For each pair
of offspring required, two different parents are chosen from the
viable section of the population using a cost-weighted (i.e.,
energy-weighted) random approach (sometimes referred to as
a roulette-wheel scheme28). One component of the coordinate
vector is then chosen as the crossover point, according to a
uniform random distribution. The coordinate vector of the first
offspring is constructed as follows. The components of lower
index than the crossover point are taken directly from the first
parent identified, and those of higher index come from the
second parent. The new coordinate at the crossover point is
chosen via linear interpolation from parent 1 to parent 2 with a
uniformly distributed random number on the interval [0,1] for
the “blending” factor. The second offspring is generated
similarly but with the roles of the two parents reversed. Random
mutations (coordinate perturbations) are also applied to increase
the diversity of the population, within an elitist strategy28,30

whereby the lowest-energy individual survives unmutated.29 The
fraction of the set of optimizable coordinates in the population
to be mutated is an input parameter that is constant throughout
the run. The population is periodically reset,31 using the scheme
by which the original population was created but with a smaller
maximum displacement, after a chosen number of elapsed
generations to avoid structural stagnation. Population resetting
also occurs when the diversity of the current working population
is insufficient for efficient exploration of the potential energy
surface (i.e., fewer than three members of the breeding section
of the population plus the individual of next-highest energy are
structurally distinct).

The algorithm terminates on completion of a selected number
of generations. Convergence to a minimum is assessed using a
chosen tolerance on the largest component of the absolute
gradient vector. At the end of a successful run, a requested
number of the minima of lowest energy found are reported.

The parallelization strategy employed is a single-population
master-slave model in which one processor performs the
genetic operations and the energy evaluations for the individuals

are distributed among all the available processors.32 For optimal
efficiency under task-farming parallelization (section II.B) where
all the energy calculations in a particular generation are of
similar duration, the two population sizes should be multiples
of the number of task farms.

III.B.2. Random (Stochastic) Search. Optimization via a
random search was probably first suggested by Anderson,33 with
early practical algorithms described and discussed by Brooks.34

The optimization is seeded with a single input structure from
which the first generation (cycle) of individuals (structures) is
created by adding random, uniformly distributed displacements
to the optimizable coordinates. At each subsequent generation,
the new population is derived from the known individual of
lowest energy by distributing structures in configuration space,
according to the basic principle of the “creeping random”
method.34 The fixed population size is an input parameter. As
the individuals within a population are independent, their
energies (and gradients) may be evaluated simultaneously34

using the task-farming parallelism described in section II.B.
In the current implementation, a new population can be

created according to three different schemes, the latter two of
which are probably novel:

(1) uniform sampling35 (the default scheme). The displace-
ments are random and uniformly distributed on the interval
[-r,r].

(2) force-direction-biased. The magnitude of each displace-
ment is drawn at random with uniform distribution from the
range [0,r], and the sign of each is the opposite of that of the
corresponding component of the gradient vector for the lowest-
energy structure. Therefore, only “downhill” displacements are
allowed (although the resulting displacement vector may not
actually lead to a structure of lower energy if the value of r is
sufficiently large that, for instance, the bottom of the basin of
attraction is overshot).

(3) force-biased. The displacement in each direction is
calculated as in the force-direction-biased scheme but is then
scaled by a factor of the product of an input parameter and the
magnitude of the corresponding component of the gradient
vector for the lowest-energy structure. The input parameter
should be chosen such that the resulting displacements are small
for a structure that is nearly converged and that generally the
full range of displacements is permitted for a configuration that
is far from convergence.

The initial value of the search radius, r, is an input parameter.
As the generations evolve, r is reduced by a chosen factor
between cycles, in order to explore a shrinking region of
configuration space and focus in on the stationary point.
Termination tests are applied after every generation. Conver-
gence is deemed to have been reached when the largest
component of the absolute gradient vector falls below a chosen
threshold value. If the new value of the search radius lies below
a selected cutoff, then the run is terminated unsuccessfully as
configuration space can no longer be explored effectively. A
maximum number of cycles can also be set.

The two force-biased schemes for creating a new population
are designed for local optimization, as the use of the gradient
vector renders them inappropriate for global optimization when
the PES under consideration supports multiple minima. For
optimal efficiency under task-farming parallelization where all
the energy calculations in a particular cycle are of similar
duration, the population size should be a multiple of the number
of task farms, as in the genetic algorithm (section III.B.1).

III.C. Transition State Optimization Methods. Various
methods for transition state optimization are implemented in
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DL-FIND. In this section, we only summarize the methods and
highlight differences from the original versions.

III.C.1. P-RFO. The partitioned rational function optimiza-
tion method36-39 converges to first-order saddle points, i.e.,
transition states. It uses the Hessian matrix to find a step which
points downhill in all directions except the one that corresponds
to the negative Hessian eigenvalue. The step points uphill in
this one direction. The algorithm itself is described elsewhere.36-39

When the Hessian contains some noise and is, thus, not exact,
the resulting small eigenvalues can cause convergence problems
in P-RFO. In our implementation, we allow the user to specify
a criterion below which an eigenvalue is considered to belong
to a “soft mode”, which is ignored in calculating the step. This
accelerates convergence for a noisy Hessian but impedes exact
convergence for a good Hessian.

The explicit calculation of the Hessian at each time step is
usually prohibitively expensive. For transition state searches
using the P-RFO method, it is recommended to calculate the
Hessian once at the start of the optimization and then update it.
The update schemes by Powell24 and Murtagh-Sargent,40 and
a combination of those two by Bofill23 are implemented. Powell
or Bofill updates are recommended. For steps that are too small,
noise in the gradient can lead to significant errors in the Hessian
update. In these cases, no update is performed. The more often
the Hessian is updated, the more it deviates from the true
Hessian. To this end, the user can specify an interval to
recalculate the Hessian. The recalculation can be done either
completely or partially. In the latter case, only soft modes (i.e.,
modes with an eigenvalue of the Hessian below some criterion)
are recalculated by finite-differencing in the direction of these
modes. This saves computation time if the Hessian has to be
recalculated by finite difference.

III.C.2. Nudged Elastic Band Method. We implemented the
nudged elastic band (NEB) method to characterize and optimize
reaction paths in terms of minimum-energy paths. NEB maps
a path in configuration space by means of a number (typically
10-20) of discrete images (replicas of the system). In the
original version of NEB41,42 these images are connected by
springs to distribute them uniformly along the path. The
improved-tangent NEB formulation43 avoids the formation of
kinks in flat areas of the potential energy surface and also avoids
corners being cut off. We implemented the improved-tangent
NEB with a climbing image formulation. The climbing image
is free of spring forces, and the force in the tangent direction is
reversed. Thus, the climbing image is maximized in the direction
of the reaction path, but minimized in all other directions, and
therefore converges to a transition state. In contrast to the
original method, we introduce an additional image once the path
is roughly converged, rather than turning one existing image
into a climbing image. This reduces the distances between the
climbing image and its neighboring images and improves the
accuracy of the tangent and, thus, the convergence. Toward
the end of the NEB optimization, individual images can be
frozen if their force perpendicular to the path becomes smaller
than a user-defined criterion.

The modular design of DL-FIND allows the NEB path to be
optimized with any optimization algorithm implemented. The
recommended one is the L-BFGS algorithm. Besides Cartesian
coordinates, DLC or HDLC coordinates can be used. While the
latter two tend to be less stable than Cartesian coordinates, they
can help in defining the initial path. If the linear transit guess
to construct the images initially is performed in Cartesian
coordinates, this sometimes leads to unphysical structures and
atom clashes. Often, those can be avoided by doing the

interpolation in one of the two choices for internal coordinates,
while optimizing the path in Cartesian coordinates.

Large systems can be handled by (a) freezing part of the
system, and/or (b) defining atom-dependent weights. Weights
are used in the form of a diagonal matrix W with entries for
each coordinate component. A weight of zero causes the
respective atoms to be minimizedsindependently of the other
images. A weight of one causes normal NEB behavior. This
allows restriction of the transition path search to the relevant
region of a large system while the rest of the system is
minimized. Our implementation allows for three different
treatments of the end points of the path: they may be freely
minimized, frozen, or restricted to minimization perpendicular
to the path. A more detailed description of the implementation
is given elsewhere.44

While it is rather involved to search for an exact transition
state with NEB, the method is very useful for mapping out an
approximate reaction path and finding a starting geometry for
a transition state search with the dimer method.

III.C.3. Dimer Method for Transition State Search. The
dimer method45-47 turns a transition state search in a degrees
of freedom into a minimization problem in 2a degrees of
freedom. The dimer method permits the location of transition
states without calculating the Hessian, and is thus useful for
large systems. The gradients of two close-lying points (the
dimer) on the PES are calculated. The dimer vector is defined
as pointing from one end point of the dimer to the other end
point. First, the dimer is rotated around its midpoint along the
forces, i.e., against the gradients. This rotation eventually aligns
the dimer vector along the eigenmode of the Hessian with the
lowest eigenvalue: the softest vibrational mode. Equivalently,
it minimizes the sum of the energies of the dimer end points
and the curvature of the energy surface along the dimer
vector. After convergence of the rotation, the dimer is
translated to maximize the energy in the direction of the dimer
vector and to minimize the energy in all directions perpen-
dicular to it.

As with the other methods, the modular implementation of
DL-FIND allows the use of different coordinate systems and
different optimization algorithms in a straightforward manner.
Generally, the L-BFGS algorithm is used for the rotation and
the translation in two separate instances. The transition state
search tends to converge faster in internal coordinates (DLC or
HDLC) than in Cartesians. Once the transition state is found, it
is possible to rotate (realign) the dimer in mass-weighted internal
coordinates without further translation, which provides the
vibrational mode corresponding to the transition mode, and its
imaginary vibrational frequency.

As with the NEB method, atom-dependent weights can be
defined. They restrict the dimer vector (and, thus, the transition
mode) to atoms with nonzero weight. Atoms with a weight of
zero are minimized. This was found useful for large systems.

More details of the implementation of the dimer method can
be found elsewhere.48

III.D. Optimization Algorithms for Conical Intersections.
The three conical intersection optimization algorithms in DL-
FIND are essentially the same as those previously implemented
in the semiempirical MNDO program.49 This section describes
implementation details specific to DL-FIND.

III.D.1. Penalty Function Method. The penalty function
method is defined as

f(r) )
EI + EJ

2
+ c1c2

2 ln[1 + (EJ - EI

c2
)2] (4)
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where EI is the energy of the lower state I and EJ is the energy
of the upper state J. This method therefore requires only the
energies and gradients of the two electronic states involved, not
the interstate coupling gradient.

In principle the penalty function method can be used with
any optimizer which can minimize an objective function. In DL-
FIND the recommended choice for small- to medium-sized
systems is the quasi-Newton method with BFGS updating and
an initial diagonal Hessian. For larger systems the L-BFGS
optimizer may be more appropriate, but as multiple-state
calculations are usually relatively expensive, the cost of the
electronic structure calculation will likely dominate up to very
large systems.

The penalty function method can be used with any of the co-
ordinate systems supported by DL-FIND. In principle the
coordinate transformation can be performed either on the
individual state gradients or on the gradient of the objective
function as the result is mathematically equivalent. In prac-
tice the objective function gradient is built first in Cartesians
and then the coordinate transformation is applied.

The default values for the two parameters in the penalty
function expression are the same as in the MNDO implementa-
tion, i.e., c1 ) 5 (kcal mol-1)-1 and c2 ) 5 kcal mol-1.

III.D.2 Gradient Projection Method. The gradient for the
gradient projection method is defined as

with

where g̃IJ and h̃IJ represent the gradient difference vector and
interstate coupling gradient vector after orthonormalization.
Unlike the penalty function method, the gradient projection
method requires the evaluation of the interstate coupling gradient
at each step in the optimization.

A peculiarity of the gradient projection method is that the
overall gradient is a nonlinear function of the state gradients
and interstate coupling gradient. This is problematic because
the coordinate transformation from, for example, Cartesian to
DLCs is not in general an orthogonal transformation. Therefore
if the overall gradient is constructed in Cartesians before being
transformed, it will be different than if the transformation is
applied to the individual state gradients before constructing the
overall gradient. The only point at which the two approaches
must agree is at the converged minimum, where the gradient
should be zero under any coordinate system. In DL-FIND the
overall gradient is built first in Cartesian coordinates before the
coordinate transformation, as this was found in tests to give
faster convergence.

The quasi-Newton optimization method is again recom-
mended for the gradient projection algorithm, at least for small
systems. The defaults for the parameters in the expression for
the gradient remain the same as in the MNDO implementation,
i.e., c3 ) 1.0 and c4 ) 0.9.

III.D.3. Lagrange-Newton Method. The Lagrangian func-
tion minimized by the Lagrange-Newton method is

where �1 and �2 are Lagrange multipliers. As HIJ, the interstate
coupling, is not available via the multiple-state interface (or
readily available in the QM codes themselves), this function is
never actually built. Expanding it to second order gives

with the gradient of the Lagrangian

Unfortunately it is not possible simply to iterate eq 9 to
convergence. The vectors gIJ and hIJ are not slowly varying near
the conical intersection seam and so they must be orthogonalized
to give slowly varying quantities. The orthogonalization pro-
cedure in DL-FIND is slightly different from that described in
ref 49. In the original procedure, following Yarkony,50 a rotation
matrix is applied to the vectors to orthogonalize them

where the value of θ for which (1/2)gIJ,θ and hIJ,θ are orthogonal
is given by

As the value of θ is not unique, the resulting vectors must
be checked for transpositions and sign changes and corrected
back if these have occurred.

This orthogonalization procedure is only valid on the conical
intersection seam (where EI - EJ ) 0), when the constraints
on the two vectors become equivalent and they lose their
meaning as independent variables. In reality the energy gap is
never exactly zero, and so a threshold t1 is defined below which
the geometry is considered to be on the seam and the
orthogonalization procedure is applied. In MNDO this has a
default value of t1 ) 10-4 kcal mol-1.

The question remains, however, of what to do with the
residual energy difference EI - EJ on the right-hand side of eq
9. If this is ignored, the errors in the constraints caused by
applying the rotation matrix will gradually build up and
convergence will be prevented. In ref 49 an empirical correction
was used, whereby the residual energy difference had its sign
changed and was transposed/halved along with the vectors. A
more justifiable approach has been developed for the DL-FIND
implementation (and subsequently back-ported to MNDO). In
this method the rotation matrix is applied to the right-hand side
of the constraint equation as well, i.e.

g ) c3[c4 f1 + (1 - c4)f2] (5)

f1 ) 2(EI - EJ)
gIJ

|gIJ|
(6)

f2 ) (I - g̃IJ X g̃IJ - h̃IJ X h̃IJ)
∂EJ

∂q
(7)

LIJ )
EI + EJ

2
+ �1(EI - EJ) + �2HIJ (8)

[∇∇LIJ gIJ hIJ

gIJ
† 0 0

hIJ
† 0 0 ][ δq

δ�1

δ�2
] ) -[ ∇LIJ

EI - EJ

0 ] (9)

∇LIJ )
gI + gJ

2
+ �1gIJ + �2hIJ (10)

[1
2

gIJ,θ

hIJ,θ
] ) [ cos 2θ sin 2θ

-sin 2θ cos 2θ ][1
2

gIJ

hIJ
] (11)

tan 4θ ) -
hIJ · gIJ

(hIJ · hIJ) -
1
4

(gIJ · gIJ)
(12)
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(Note that EI - EJ is halved before the orthogonalization because
gIJ was also halved). Because there is more than one solution
for θ, sign changes and transpositions can occur when the
rotation matrix is applied. With this scheme it is natural that
sign changes and transpositions on the right-hand side should
be corrected as well as on the left, because the rotation matrix
has been applied to both sides. Both sides of the constraint
corresponding to gIJ must then be doubled again before insertion
into eq 9 (or alternatively the constraint could be reformulated
to include the factor of 1/2 throughout).

By applying the rotation matrix to both sides of the constraint
equations, there is in principle no longer any need to have a
threshold for the orthogonalization procedure, because the
equations now hold for any value of EI - EJ. However, there is
one other factor to consider. In the MNDO implementation, the
Hessian of the Lagrangian ∇∇LIJ is updated by a quasi-Newton
method, e.g., BFGS. The gradient difference and interstate
coupling gradient terms are only included in the update when
orthogonalization is switched on, because otherwise they are
not slowly varying. With the revised method, these terms can
be included from the start as they are always orthogonalized.
However, this does not lead to an improvement in convergence
properties. Including these terms from the start forces the
optimization toward a conical intersection seam too quickly, at
a detriment to minimizing the overall energy. It was therefore
found necessary to retain the orthogonalization thresholds t1 and
t2, with the same default values as in MNDO, i.e., t1 ) 10-4

kcal mol-1, t2 ) 1 kcal mol-1.
Unlike in MNDO, geometrical constraints have not been

implemented in the DL-FIND version of the Lagrange-Newton
method. This is because they essentially duplicate the function-
ality of the restraints available in ChemShell.

Unlike the other two approaches, the Lagrange-Newton
method requires a purpose-built optimizer. This is similar to
the Newton-Raphson optimizer, but with two extra coordinates
corresponding to the constraint terms of the Lagrangian (along
with the two extra gradients and two extra rows/columns in the
Hessian). To avoid numerical problems associated with inversion
of the Lagrange-Newton Hessian, the inversion step was
replaced by diagonalization and projection of the Hessian, as
in the MNDO implementation. As with the gradient projection
method, the interstate coupling is required at each step.

It does not matter whether the coordinate transformation is
applied before or after the Lagrange-Newton gradient is
constructed as the results are mathematically equivalent (unlike
the case of the gradient projection method). However, as the
Hessian is constructed in internal coordinates, it is in fact
necessary to apply the coordinate transformation beforehand so
that the individual gIJ and hIJ vectors are available for insertion
into the Hessian.

III.D.4. General Considerations about Conical Intersection
Optimizations. The Lagrange-Newton method is the most
efficient of the implemented conical intersection optimization
methods49 and is recommended as the first choice when a
reliable interstate coupling gradient is available. The gradient
projection method is usually less efficient but can be used for

confirming the results of Lagrange-Newton. The penalty
function method is only recommended when the interstate
coupling gradient is unavailable.

For all three algorithms a constant trust radius is recom-
mended with a size of 0.1 Å. For the gradient projection and
Lagrange-Newton methods an energy-based trust radius is not
available as no objective function is computed. For the penalty
function method it is possible to use an energy-based trust radius
but in tests this has been found to hinder convergence. This is
because the objective function of the penalty function method
is much more likely to increase in value during the normal
course of an optimization than an ordinary energy value, and
an energy-based trust radius restricts this unnecessarily.

It is highly recommended for conical intersection optimiza-
tions with the quasi-Newton optimizer to do a BFGS update of
the Hessian at every step. This is particularly important for the
Lagrange-Newton method where the rows/columns of the
Hessian corresponding to the constraints must be updated in
order to drive the system to convergence.

If the starting geometry is known to be close to the optimized
geometry, the initial diagonal Hessian may be more accurate if
a small value of the finite-difference displacement (e.g., 0.001
au) is used.

IV. Applications

IV.A. Survey of Applications Using DL-FIND. DL-FIND
contains a variety of commonly available methods, such as local
minimizers, and less standard approaches which increase the
versatility of the program and provide extra functionality.
Although DL-FIND has only been recently implemented, its
special features have already found use in a number of
applications, some of which are mentioned in this section.

Hybrid delocalized coordinates are particularly suitable for
the study of large systems. These coordinates were first
implemented in the HDLCopt optimizer16 which has been ported
to DL-FIND and has been employed successfully in many
ChemShell applications to enzymatic systems. Two recent
reviews51,52 give an overview over such work, for example on
extensive quantum mechanical-molecular mechanical (QM/MM)
studies of the cytochrome P450cam enzyme.51 Other recent
applications of this kind include QM/MM geometry optimiza-
tions of phosphoglucore isomerase,53 cysteine protease,54 and
flavin photoreceptors.55

The dimer method in DL-FIND has been used to find the
transition state of the rate-limiting oxygenation reaction in the
catalytic cycle of the enzyme p-hydroxybenzoate hydroxylase.48

In this case, as many as 18762 degrees of freedom had to be
optimized in a transition-state search. The dimer method was
found to have a larger radius of convergence and required less
energy and gradient calculations than the P-RFO method.

The nudged elastic band method has been employed to find
transition paths in astrochemical reactions, such as the adsorption
of water44 and dihydrogen56 on an olivine surface. It has also
been an essential tool in a QM/MM study of the reductive half-
reaction of xanthine oxidase,57 where some of the steps involve
a reorientation of the substrate on a relatively flat potential
energy surface; in these cases, the NEB method in DL-FIND
has proved helpful to locate the transition states whereas other
approaches failed.

In a study on the small protonated Schiff base penta-3,5-
dieniminium,58 DL-FIND was used to find critical points on
the ground-state and excited-state energy surfaces using the
semiempirical OM2/GUGA-CI method from MNDO and the ab
initio CASSCF and CASPT2 methods from MOLPRO. The

[ cos 2θ sin 2θ
-sin 2θ cos 2θ ][1

2
(EI - EJ)

0 ] )

[ 1
2

cos 2θ · (EI - EJ)

-1
2

sin 2θ · (EI - EJ) ] (13)
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OM2/GUGA-CI excited-state minimum energy path was cal-
culated using the NEB algorithm, and CASSCF and CASPT2
reaction paths were determined along the torsional reaction
coordinate.

The NEB method in DL-FIND has further been used to
elucidate the mechanism of flavin adduct formation after
excitation of the LOV1 domain of the blue-light receptor protein
phototropin.59 Minimum energy paths on the lowest triplet
energy surface were calculated in order to characterize the
transition state and to calculate the relative energies of the triplet
minimum and singlet-triplet intersystem crossing point.

IV.B. QM/MM Conical Intersection Optimization. One
particular feature of DL-FIND is conical intersection optimiza-
tion. The original MNDO implementation49 has already been
successfully used in semiempirical QM investigations on 9H-
adenine,60 guanine,61 and the pyrimidine nucleobases uracil,
thymine, and cytosine.62 By reimplementing the algorithms in
DL-FIND, the range of possible applications has been extended
to cover both other electronic structure methods (e.g., ab initio
QM methods as in ref 58) and combined QM/MM approaches.
This is made possible by linking DL-FIND with ChemShell,
which has been extended to handle QM/MM energies and
gradients for multiple electronic state calculations. ChemShell
interfaces with external programs or its own routines to obtain
the separate QM and MM energies and gradients and then
provides the combined QM/MM energies and gradients to DL-
FIND. ChemShell is responsible for adding the MM gradient
to each QM state gradient in turn, and it resolves link atom
forces. Note that no manipulation of the QM interstate coupling
gradients is required as there is no MM contribution to them.

In the QM code separate gradient contributions from the point
charges should be calculated for each electronic state and for
the interstate coupling gradient. This is done when using MNDO
as the QM code in QM/MM studies with ChemShell; the
interstate coupling gradient is not treated in any special way,
although the gradient contributions from the MM point charges
are very small (and have been neglected in previous QM/MM
work63).

The QM/MM implementation with MNDO was validated by
comparison with the microsolvation study of an all-trans retinal
model reported in ref 63. In this study the retinal model is
optimized first in the gas phase and then again surrounded by
57 water molecules placed in favorable hydrogen bonding arrange-
ments (Figure 1). This is not expected to be the global minimum

but rather representative of a geometry that might be sampled in
such a cluster. In the current study the starting coordinates were
taken from the Supporting Information of ref 63.

The required force field parameters were specified directly
in the ChemShell script (via the DL_POLY interface). The MM
force field was defined following ref 63. The solvent molecules
were modeled using the flexible SPC representation of water.64

The van der Waals parameters for the retinal model were taken
from the OPLS-UA force field of Weiner et al.65 (using the
closest available atom types). There are some differences in the
semiempirical QM methods used here and in the previous
work.63 In the latter case, orbitals were generated using the
floating occupation molecular orbital (FOMO) SCF proce-
dure (which is not available in MNDO), and the relevant states
were computed at the AM1/CISDT level with an eight orbital
active space.63 By comparison, we evaluate the performance of
the OM2 semiempirical Hamiltonian66,67 with GUGA config-
uration interaction (singles and doubles),68 using ROHF mo-
lecular orbitals with an active space of four orbitals (one doubly
occupied, two singly occupied, one unoccupied). In addition,
we compare our gas-phase results with SA-2-CASSCF results
(obtained with a 10 orbital active space).69

Table 1 presents energies for the vertical excitation to the
first excited (S1) state and the optimized conical intersection
(MECP) relative to the ground-state (S0) minimum. The OM2/
GUGA-CISD vertical excitation and MECP energies are
intermediate between the AM1/CISDT and CASSCF values.
The latter are expected to bracket the true values, because
CASSCF does not include dynamic correlation and AM1/CISDT
overcorrects.69 The OM2/GUGA results are thus realistic which
is particularly gratifying in view of the fact that only a rather
small active space was used.

Table 2 presents the change in energy on addition of the
solvent molecules and reoptimization: For both methods the
ground state is preferentially stabilized by the solvent molecules.
This is as anticipated, since the chromophore is more polar in
the ground state with the charge more localized around the N
atom.

In an overall assessment, the present and the previous69

semiempirical QM/MM study on a microsolvated retinal model
thus give results that are consistent with each other (considering
the differences in the QM treatment). Further such QM/MM
investigations on conical intersections in a condensed-phase
environment are in progress using DL-FIND, e.g., for adenine
in aqueous solution.70

V. Conclusion

The DL-FIND package3 provides a powerful and flexible open
source library of optimization methods for use with atomistic
simulation codes. In this article the wide range of optimization

Figure 1. The gas phase and microsolvated (a) ground state and (b)
C11-C12 twisted minimum energy crossing point of the all-trans retinal
model used in this example.

TABLE 1: Optimized Energies in Electronvolts Relative to
the S0 Minimum for the Gas Phase Retinal Model

method S1 energy at S0 min S0/S1 MECP

FOMO AM1/CISDT63 2.22 1.31
OM2/GUGA-CISD 3.02 1.96
SA-2-CASSCF69 3.51 2.30

TABLE 2: Change in Energy (in Electronvolts) on
Reoptimization following Addition of Solvent Molecules

method S1 energy at S0 min S0/S1 MECP

FOMO AM1/CISDT63 +0.65 +0.32
OM2/GUGA-CISD +0.49 +0.52
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algorithms supported by the code have been outlined, including
standard local minimization routines and parallel minimization,
as well as methods for the optimization of transition states and
conical intersections. Each of these methods may be used with
either Cartesian, delocalized, or total connection coordinates.
Large systems can be efficiently treated using hybrid delocalized
coordinates and the low-memory L-BFGS optimizer. All
methods are fully restartable.

In recent studies DL-FIND has been shown to be a versatile
optimizer for transition state problems (using the dimer and nudged
elastic band methods) and quantum mechanical conical intersection
optimizations. In a further application presented here, DL-FIND
was used in conjunction with ChemShell to optimize the ground
state and the conical intersection of a retinal model in a microsol-
vated environment using a QM/MM approach.

In addition to ChemShell, interfaces have been developed to
GAMESS-UK and CRYSTAL. For ease of integration, a well-
defined interface is presented to external programs, which should
facilitate its inclusion into other codes. The modular design of
DL-FIND should also make it straightforward to add further
optimization algorithms in the future.
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Lennartz, C. J. Mol. Struct. (THEOCHEM) 2003, 632, 1.

(9) Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson,
C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D’Arco,
Ph.; Llunell, M.; Crystal06 user’s manual; http://www.crystal.unito.it/, 2006.

(10) Thiel, W.; MNDO program, version 6.1, Mülheim, 2008.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03,
ReVision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

(12) Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz, M.;
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